Share on

Gene flow and Bayesian phylogeography of serogroup C meningococci circulating in Italy

Authors

Abstract

Introduction

Neisseria meningitidis is a bacterial pathogen that can cause sporadic cases, small outbreaks and large epidemics. Serogroup C and B meningococci are the most common in Italy. In particular, hyperinvasive strains of serogroup C meningococci have caused outbreaks of severe disease in our country. In a previous study we tracked the pattern of dispersal of hyperinvasive strains, focusing the attention on their introduction routes. In the present paper we report the results of the analysis of the migration patterns of C:P1.5-1,10-8:F3-6:ST-11(cc11) meningococcal strains from different Italian regions collected between 2012 and 2017.

Methods

N. meningitidis genomes of isolates collected between January 2012 and December 2017 were sequenced using the Illumina MiSeq platform, through the whole genome sequencing (WGS) method and were analyzed using the BIGSdb Genome Comparator tool implemented within the PubMLST website. The phylogeography was performed using the software package BEAST. The gene out/in flows in Italy were tested by a modified version of the Slatkin and Maddison test using MacClade.

Results

The majority of the Italian C:P1.5-1,10-8:F3-6:ST-11(cc11) strains clustered together and segregated into two main  sub-clades. In particular, the hyperinvasive strain, starting from UK reached at first Emilia Romagna region and by 2012 the port of Livorno, causing a small outbreak. Subsequently a wave of migrations involved different Italian regions. The “Tuscany-outbreak strain” was likely introduced in Italy between 2013 and 2014. Most of the observed gene flow events occurred from the Center to Northern part of Italy.

Discussion

The phylogeographic analysis allowed to track the dissemination of this strain belonging to the hypervirulent C:P1.5-1,10-8:F3-6:ST-11(cc11) clone. In particular, Central Italy was identified as a major source of dissemination, with a 54.5% of gene flows to the North and, to a lesser extent, to the South of the country. The information gathered through the application of phylogenetic and evolutionary methods appears consistent with the epidemiological data derived from the national surveillance system. 

References

  1. REFERENCES
  2. Stephens DS, Greenwood B, Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet. 2007; 369(9580):2196–210. DOI: 10.1016/S0140-6736(07)61016-2.
  3. Caugant DA, Maiden MC. Meningococcal carriage and disease-population biology and evolution. Vaccine. 2009; 24;27(2):B64-70. DOI: 10.1016/j.vaccine.2009.04.061.
  4. Didelot X, Bowden R, Wilson DJ, Peto TE A, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet. 2012; 13, 601–612.
  5. Loman N J, Pallen M J. Twenty years of bacterial genome sequencing. Nat Rev Microbiol. 2015; 13, 787–794.
  6. Joseph S J, Read TD. Bacterial population genomics and infectious disease diagnostics. Trends Biotechnol. 2010; 28, 611–618.
  7. Lo Presti A, Neri A, Fazio C, Vacca P, Ambrosio L, Grazian C, et al. Reconstruction of Dispersal Patterns of Hypervirulent Meningococcal Strains of Serogroup C:cc11 by Phylogenomic Time Trees. J Clin Microbiol. 2019; 23;58(1). pii: e01351-19. doi: 10.1128/JCM.01351-19.
  8. Stefanelli P, Fazio C, Neri A, Ciammaruconi A, Balocchini E, Anselmo A, et al. Genome-based study of a spatio-temporal cluster of invasive meningococcal disease due to Neisseria meningitidis serogroup C, clonal complex 11. J Infect. 2016;73(2):136-44. DOI: 10.1016/j.jinf.2016.05.003.
  9. Jolley KA, Maiden M CJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010; 11:595 DOI: 10.1186/1471-2105-11-595.
  10. PubMLST Neisseria data-base. http://pubmlst.org/neisseria/.
  11. Marttinen P, Baldwin A, Hanage WP, Dowson C, Mahenthiralingam E, Corander J. Bayesian modeling of recombination events in bacterial populations. BMC Bioinformatics. 2008; 7;9:421. DOI: 10.1186/1471-2105-9-421.
  12. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, et al. Rapid pneumococcal evolution in response to clinical interventions. Science. 2011; 331:430–434.DOI: 10.1126/science.1198545.
  13. Méric G, Miragaia M, de Been M, Yahara K, Pascoe B, Mageiros L, et al. Ecological Overlap and Horizontal Gene Transfer in Staphylococcus aureus and Staphylococcus epidermidis. Genome Biol Evol. 2015; 16:1313-28. DOI: 10.1093/gbe/evv066.
  14. Marttinen P, Hanage WP, Croucher NJ, Connor TR, Harris SR, Bentley SD, Corander J. et al. Detection of recombination events in bacterial genomes from large population segments. Nucleic Acids Research. 2011; 40(1): e6. DOI: 10.1093/nar/gkr928
  15. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution. 2013; 30:2725-2729. DOI: 10.1093/molbev/mst197
  16. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:1253-6. DOI: 10.1093/molbev/msn083
  17. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012; 30 :772. DOI: 10.1038/nmeth.2109.
  18. Strimmer K, von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A. 1997, 94: 6815–6819.
  19. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007; 7: 214
  20. Kass RE, Raftery AE. Bayes Factors. Journal of the American Statistical Association. 1995; 90: 773-795.
  21. A. Rambaut. FigTree. http://tree.bio.ed.ac.uk/software/figtree/
  22. Bielejec F, Rambaut A, Suchard MA, Lemey P. SPREAD: Spatial Phylogenetic Reconstruction of Evolutionary Dynamics. Bioinformatics. 2011; 27:2910-2912.DOI: 10.1093/bioinformatics/btr481.
  23. Google Earth Pro V.7.3.2.5491. http://earth.google.com. (accessed Apr 2018).
  24. Slatkin M, Maddison WP. A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics. 1989;123(3):603-13.
  25. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology. 59(3):307-21, 2010. DOI: 10.1093/sysbio/syq010.
  26. Stefanelli P, Fazio C, Neri A, Isola P, Sani S, Marelli P, et al. Cluster of invasive Neisseria meningitidis infections on a cruise ship, Italy, October 2012. Euro Surveill. 2012;17:pii=20336.
  27. Moore PS. Meningococcal meningitis in sub-Saharan Africa: a model for the epidemic process. Clin Infect Dis. 1992;14(2):515-25.
  28. Rosenstein N. Commentary: Opportunities to decrease mortality and long-term sequellae associated with meningococcal disease in Africa. Int J Epidemiol. 2001;30(6):1447-8.
  29. Schuchat A, Robinson K, Wenger JD, et al. Bacterial meningitis in the United States in 1995. Active Surveillance Team. N Engl J Med. 1997; 337:970-6.
  30. Italian National Health Institute (Istituto Superiore di Sanità, ISS). [Surveillance data on invasive bacterial diseases updated on 23 April 2019]. Italian. Available from: http://old.iss.it/binary/mabi/cont/Interim_Report_2018_finale.pdf
  31. Stefanelli P, Miglietta A, Pezzotti P, Fazio C, Neri A, Vacca P, et al. Increased incidence of invasive meningococcal disease of serogroup C / clonal complex 11, Tuscany, Italy, 2015 to 2016. Euro Surveill. 2016;21:pii=30176.
  32. Lamelas A, Harris SR, Röltgen K, Dangy JP, Hauser J, Kingsley RA, et al. Emergence of a new epidemic Neisseria meningitidis serogroup A Clone in the African meningitis belt: high-resolution picture of genomic changes that mediate immune evasion. MBio. 2014; 21:e01974-14.
  33. Duchêne S, Holt KE, Weill FX, Le Hello S, Hawkey J, Edwards DJ, et al. Genome-scale rates of evolutionary change in bacteria. Microb Genom. 2016; 30;2(11):e000094. DOI: 10.1099/mgen.0.000094.
  34. Bowers JR, Kitchel B, Driebe EM, MacCannell DR, Roe C, Lemmer D, et al. Genomic Analysis of the Emergence and Rapid Global Dissemination of the Clonal Group 258 Klebsiella pneumonia Pandemic. PLoS One. 2015; 21;10(7):e0133727. DOI: 10.1371/journal.pone.0133727.
  35. EpiCentro. http://www.epicentro.iss.it/problemi/meningiti/report_mening_veneto.asp. Accessed on 6 February 2018.
  36. Ferro A, Menegon T. EMERGENZA MENINGITE: L’OPERATIVITÀ LOCALE E REGIONALE. https://salute.regione.veneto.it/c/document_library/get_file?uuid=b4861725-d3be-4c48-be8f-7333baf21223&groupId=73838. Accessed on 6 February 2018
  37. Miglietta A, Fazio C, Neri A, Pezzotti P, Innocenti F, Azzari C, et al. Interconnected clusters of invasive meningococcal disease due to Neisseria meningitidis serogroup C ST-11 (cc11), involving bisexuals and men who have sex with men, with discos and gay-venues hotspots of transmission, Tuscany, Italy, 2015 to 2016. Euro Surveill. 2018; 23. ES.2018.23.34.
  38. Regione Toscana. Campagna contro il meningococco C. Misure di profilassi e prevenzione (http://www.regione.toscana.it/-/campagna-contro-il-meningococco-c).

Downloads

Authors

Alessandra Lo Presti - Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy

Giovanni Rezza - Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy

Arianna Neri - Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy

Cecilia Fazio - Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy

Luigina Ambrosio - Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy

Annapina Palmieri - Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy

Paola Vacca - Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy

Paola Stefanelli - Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy

How to Cite
Lo Presti, A., Rezza, G., Neri, A., Fazio, C., Ambrosio, L., Palmieri, A., Vacca, P., & Stefanelli, P. (2020). Gene flow and Bayesian phylogeography of serogroup C meningococci circulating in Italy. Annali dell’Istituto Superiore Di Sanità, 56(4), 403–408. Retrieved from https://annali.iss.it/index.php/anna/article/view/1015
  • Abstract viewed - 295 times
  • PDF downloaded - 117 times
  • PDF downloaded - 20 times